En estadística y probabilidad se llama distribución normal, distribución de Gauss, distribución gaussiana o distribución de Laplace-Gauss, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en estadística y en la teoría de probabilidades.1
La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro estadístico. Esta curva se conoce como campana de Gauss y es el gráfico de una función gaussiana.2
La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos.3Mientras que los mecanismos que subyacen a gran parte de este tipo de fenómenos son desconocidos, por la enorme cantidad de variables incontrolables que en ellos intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes.
De hecho, la estadística descriptiva solo permite describir un fenómeno, sin explicación alguna. Para la explicación causal es preciso el diseño experimental, de ahí que al uso de la estadística en psicología y sociología sea conocido como método correlacional.
La distribución normal también es importante por su relación con la estimación por mínimos cuadrados, uno de los métodos de estimación más simples y antiguos.
Algunos ejemplos de variables asociadas a fenómenos naturales que siguen el modelo de la normal son:
- caracteres morfológicos de individuos como la estatura;
- caracteres fisiológicos como el efecto de un fármaco;
- caracteres sociológicos como el consumo de cierto producto por un mismo grupo de individuos;
- caracteres psicológicos como el cociente intelectual;
- nivel de ruido en telecomunicaciones;
- errores cometidos al medir ciertas magnitudes;
- etc.
La distribución normal también aparece en muchas áreas de la propia estadística. Por ejemplo, la distribución muestral de las medias muestrales es aproximadamente normal, cuando la distribución de la población de la cual se extrae la muestra no es normal.4 Además, la distribución normal maximiza la entropía entre todas las distribuciones con media y varianza conocidas, lo cual la convierte en la elección natural de la distribución subyacente a una lista de datos resumidos en términos de media muestral y varianza. La distribución normal es la más extendida en estadística y muchos tests estadísticos están basados en una "normalidad" más o menos justificada de la variable aleatoria bajo estudio.
Definición formal[editar]
La función de distribución de la distribución normal está definida como sigue:
donde:
- es la media (también puede ser la mediana, la moda o el valor esperado, según aplique)
- es la desviación típica [estándar es un anglicismo]
- es la varianza
- representa la función de densidad de probabilidad
También podemos definir la normal a través de la función de densidad:
La función de distribución normal estándar es un caso especial de la función donde y :
Esta función de distribución puede expresarse en términos de una función especial llamada función error de la siguiente forma:
y la propia función de distribución puede, por consiguiente, expresarse así:
El complemento de la función de distribución de la normal estándar, , se denota con frecuencia , y es referida, a veces, como simplemente función Q, especialmente en textos de ingeniería.89 Esto representa la cola de probabilidad de la distribución gaussiana. También se usan ocasionalmente otras definiciones de la función Q, las cuales son todas ellas transformaciones simples de .10
La inversa de la función de distribución de la normal estándar (función cuantil) puede expresarse en términos de la inversa de la función de error:
y la inversa de la función de distribución puede, por consiguiente, expresarse como:
Esta función cuantil se llama a veces la función probit. No hay una primitiva elemental para la función probit. Esto no quiere decir meramente que no se conoce, sino que se ha probado la inexistencia de tal función. Existen varios métodos exactos para aproximar la función cuantil mediante la distribución normal (véase función cuantil).
Los valores Φ(x) pueden aproximarse con mucha precisión por distintos métodos, tales como integración numérica, series de Taylor, series asintóticas y fracciones continuas.