Límite de una función
En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo o radio de convergencia se van aproximando a un punto fijado c — punto de acumulación —, independientemente de que este pertenezca al dominio de la función.1 Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.
Coloquialmente, se dice que el límite de la función f(x) cuando x tiende a c es L , y se escribe:
si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.
Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:
"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que ε unidades".
Esta definición, se puede escribir utilizando términos lógico-matemáticos y de manera compacta:
Esta definición es equivalente al límite de una sucesión, una función es continua si:
- Límite de una función en un punto
- El límite de la función en el punto , es el valor al que se acercan las imágenes (las , puntos del codominio) cuando los puntos del dominio (las ) se acercan al valor . Es decir, diremos que es el límite de cuando los puntos del dominio tienden a es .
- Definición de límite de una función en un punto por épsilon y delta
Esto es,
La idea gráfica es la siguiente:
- Definición de límite de una función en un punto a través de entornos